
Inverse Monte Carlo calculation of the effective pair interactions in FePd

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 485

(http://iopscience.iop.org/0953-8984/17/3/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 19:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) 485–492 doi:10.1088/0953-8984/17/3/007

Inverse Monte Carlo calculation of the effective pair
interactions in FePd

Tarik Mehaddene

Physik Department E13/FRMII, Technische Universität München, 85747 Garching, Germany

E-mail: mtarik@ph.tum.de

Received 25 October 2004, in final form 29 November 2004
Published 7 January 2005
Online at stacks.iop.org/JPhysCM/17/485

Abstract
Warren–Cowley short-range order parameters deduced from diffuse neutron
scattering in an FePd single crystal have been used to calculate the effective
pair interaction energies using an inverse Monte Carlo method. The pair
interaction energies agree well with those obtained recently using an inverse
cluster variation method and show a strong attraction between second-nearest-
neighbour like atoms. The inverse Monte Carlo calculations show, in contrast
to the direct cluster variation method, that the pair interactions in FePd are
vanishing beyond the sixth atomic shell. The relevance of the calculated
pair interactions is tested in terms of the order–disorder transition temperature
simulation. A satisfactory agreement with the experimental value is observed.

1. Introduction

In substitutional solid solutions, the alloying atoms do not randomly occupy the lattice sites.
Short-range order (SRO) is observed at higher temperature while below critical temperatures
long-range order (LRO) or phase decomposition is seen. A precise knowledge of the SRO
and of the atomic interactions responsible of it is therefore of basic interest for calculations of
thermodynamic properties and phase diagrams [1–3]. Diffuse scattering of x-rays and neutrons
remains the technique of choice for quantitative studies of the SRO. Over the last 50 years,
the measurements have evolved significantly and, at present, they are carried out with a high
degree of accuracy in single crystals at high and low temperature [4–11]. On the theoretical
side, the study of SRO in alloys and its characterization through diffuse scattering has also been
significantly improved since the pioneering work of Cowley [12], Krivoglaz [13] and Clapp
and Moss [14] out of which emerged the well known Krivoglaz–Clapp–Moss formula (KCM).
At present, several methods, aimed at extracting the pair interaction energies, providing a
significant improvement over the KCM formula have been proposed. Among the approaches
the most commonly used are the generalized perturbation method [15], in which the interactions
are obtained by perturbation of the random alloy, and the real space inverse cluster variation
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Figure 1. L10-ordered phase with the different atomic occupations (• Fe and ◦ Pd). The labels
give the shell index lmn. The positions always occupied by Fe are framed.

method (CVM) introduced by Gratias and Cénédèse [16]. Basically, the inverse CVM consists
in minimizing a free energy functional where the entropy is a linear combination of entropies
of finite clusters included in a given basic cluster. This method has been recently applied to
extract the pair interaction energies in FePd using the Warren–Cowley SRO measured by in
situ neutron diffuse scattering in an FePd single crystal at 1020 K [17]. While it is relatively
straightforward to implement, the inverse CVM becomes computationally very intensive for
large cluster approximations. Thus, the fitting is typically done for a relatively small number
of SRO parameters. In fcc-based alloys, the commonly used approximation consists in using
two maximum clusters, the face centred cube and the 13-point cubo-octahedron [18]. This
cluster combination allows the calculation of only the first four and the sixth effective pair
interactions and results in interactions that may be unrealistically short range for the alloy under
investigation. To a great extent, this problem can be solved by an alternative approach, which
consists in fitting the pair correlations by an inverse Monte Carlo method in real space [19], in
which case longer interaction ranges may be included without any significant computational
overhead.

In this paper, the inverse Monte Carlo method is applied to calculate the pair interaction
energies in FePd using the same Warren–Cowley SRO parameters as deduced in [17]. Around
the 50/50 stoichiometry, FePd orders in the L10 structure, made of alternating pure iron and
pure palladium (001) planes (figure 1), and undergoes an order–disorder transition to the fcc-
disordered state at 920 K [20]. The very anisotropic chemical order of the L10 structure is
accompanied by a strong magnetic anisotropy and a tetragonality c/a ≈ 0.97. The pronounced
anisotropic properties of FePd are at the core of the present renewed interest in this system which
is a good candidate for magneto-optical-storage devices [21, 22] and has potential applications
as actuators and coupling devices [23]. Consequently, an additional motivation of the current
work was to provide a detailed characterization of the chemical order and of the underlying
interaction energies in a system with potentially important engineering applications.

2. Computational model

Lattice models have been widely and successfully used for computing the equilibrium
thermodynamic properties of crystalline alloys. In a binary lattice model, the occupation
of each site i in a lattice can be represented by a spin-like operator σi = ±1. The arrangement
of atoms on the entire lattice is then given by σ = σ1, σ2, . . . , σN , where N is the number of
sites in the lattice. In this representation, the total energy of the alloy can be written in terms of
σ as a cluster expansion containing many-body contributions [15, 24]. Bieber and Gautier [25]



Inverse Monte Carlo calculation of the effective pair interactions in FePd 487

have shown that in transition metal alloys the predominant terms of the latter expansion are
the pair interaction terms.

In order to calculate the pair interaction energies from the Warren–Cowley SRO
parameters, we consider an Ising Hamiltonian which contains effective pair interactions:

H = 1
2

∑

i, j

Vi jσiσ j (1)

where σi is the occupation operator on site i . Its value is equal to 1 or −1 when the site is
occupied by an Fe or Pd atom respectively. Vi j is the effective pair interaction between atoms
at sites i and j and can be written as

Vi j = 1/4[vFeFe
i j + vPdPd

i j − 2vFePd
i j ]. (2)

For convenience the various pair-interaction energies Vi j can be labelled by the shell index
(lmn) or the shell number n. In principle, it is also possible to introduce a magnetic term in the
Hamiltonian and to define effective pair interactions which have both chemical and magnetic
contributions. However, in the Fe–Al system that is magnetically similar to Fe–Pd, Pierron-
Bohnes et al have shown that the interplay between chemical and magnetic SRO is negligible
above T/TCurie = 1.2 [26, 27]. In FePd, TCurie = 760 K. The measurement temperature
(1020 K) [17] is thus high enough (T/TCurie = 1.34) to neglect the magnetic interactions.

The pair interaction energies Vn are linked to the SRO parameters αn by the Ising
Hamiltonian (equation (1)). The SRO parameters are related to the correlation functions
by

αn = 〈σ0σn〉 − 〈σ 2
0 〉

1 − 〈σ0〉2
(3)

where σ0 and σn are the occupation operators at the origin and site n, respectively. The brackets
stand for configurational averages.

The effective pair interaction energies are a priori unknown and will be discovered
considering a three-dimensional lattice of L3 fcc cells with cubic lattice constant a and linear
periodic boundary conditions in all directions. Each site i of the lattice is occupied either by
an Fe atom or a Pd atom. In accord with the stoichiometry of the L10 structure, there are
as many Fe as Pd atoms. The modelling procedure starts with a random distribution. The
evolution of the system is then simulated in the canonical ensemble i.e., based on exchanges
of unlike atoms between different sites. A large number of exchanges between unlike atom
pairs are attempted, each with a success ratio given by the Glauber algorithm: the exchange is
performed if the Glauber probability

P(�H ) = exp(−�H/kBT )

1 + exp(−�H/kBT )
(4)

is larger than a random number between zero and unity. kB and T are the Boltzmann constant
and absolute temperature, respectively. �H is the energy balance of the exchange, evaluated
using equation (1), where the sum runs over a given number of interacting atomic shells,
considering the final and the initial configurations. We will refer to one Monte Carlo cycle
as the number of Monte Carlo attempts necessary to visit every crystal site once on average.
The SRO parameters are calculated for the considered number of interacting shells. At the
same stage, the matrix A of the partial derivatives δαn/δVm is also calculated. A feedback
process, that consists of comparing the calculated SRO parameters (αcal

n ) to the measured ones
(αexp

n ) and rescaling the pair interaction energies accordingly, by solving the linear system
�α = A�V , is then executed every Monte Carlo cycle. �α is the vector representing the
difference between αcal

n and α
exp
n and �V the corresponding difference in the amplitude of
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Figure 2. Evolution for the first five coordination shells of the Warren–Cowley SRO parameters
(left) and the pair interaction energies (right) during the relaxation of the system toward the final
equilibrium configuration obtained for L = 50 considering interactions up to the ninth nearest
neighbours.

the pair interactions. The process is carried on until the system reaches the final equilibrium
configuration in which the calculated SRO parameters are very close to the experimental ones.
In this way, values of the effective pair interaction energies have been determined up to the
ninth atomic shell. The calculations have been performed using the Discus package [28].

3. Results and discussion

To ensure that the linear dimensions of the simulation box are large enough compared to the
correlation length of the SRO, calculations have been performed for different model crystals
with linear dimension L varying from ten to 50 fcc cells with interacting shells from the
fifth up to the ninth nearest neighbours. An example of the evolution of the pair interaction
energies and the Warren–Cowley SRO parameters during the relaxation of the system toward
the equilibrium configuration is shown in figure 2. The SRO parameters, as well as the pair
interaction energies, become stable after approximately 25 Monte Carlo cycles. To ensure a
final equilibrium state, calculations have been carried on up to 100 Monte Carlo cycles and
statistical averages performed over the last 40 equilibrium configurations. The residual value
R = ∑

n |αcal
n − α

exp
n |/ ∑

n |αexp
n | of the experimental and the simulated SRO parameters has

been calculated for different crystal dimensions considering the first nine coordination shells.
The results are reported in figure 3. We see clearly that the quality of the fit is rather bad
for small model crystals and gets better increasing the size of the simulation box. Its value
is in the order of 10−4 for L = 40 and 50, in which cases only small deviations (�1–2%)

in the final pair interactions have been found. In order to reveal any correlation between the
parameters, further calculations have been performed for the model crystal containing 503

fcc cells considering a decreasing number of atomic shells from the ninth up to fifth nearest
neighbours. It turned out that the correlations between the parameters are rather small and the
pair interaction energies deduced for different numbers of interacting shells are within the error
bars. In fact, in the case of the pairwise interaction model, the correlations are usually small.
Besides, the inverse Monte Carlo method would not produce reliable results if there were
strong correlations between the parameters for instance, because of less appropriate choice of
the interaction model or insufficient information about the SRO configuration.
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Figure 3. Residual value R versus the linear size of the model crystal calculated considering the
first nine coordination shells.

Table 1. Experimental (αexp
n ) and calculated (αcal

n ) Warren–Cowley SRO parameters. Pair
interaction energies (in meV) deduced from inverse Monte Carlo calculations (V IMC

n ). For
comparison the results of the direct and inverse (underlined) CVM (V CVM

n ) [17] are also reported.
The uncertainties �V CVM

n and �V IMC
n are estimated from the error bars on the experimental SRO

parameters for V CVM
n and from both experimental errors and the statistical averages for V IMC

n .

Shell (n) lmn 2Rlmn /a 102α
exp
n 102αcal

n V IMC
n �V IMC

n V CVM
n �V CVM

n

1 110 1.141 0.19(37) 0.1899 −0.32 0.34 −0.43 0.33
2 200 2.000 13.99(56) 13.998 −10.31 1.1 −11.76 1.11
3 211 2.449 −0.79(22) −0.795 0.22 0.3 0.47 0.20
4 220 2.828 3.79(30) 3.79 0.90 0.28 0.85 0.88
5 310 3.162 −2.25(23) −2.252 1.19 0.31 1.97 0.20
6 222 3.464 2.95(30) 2.951 −1.14 0.4 −1.54 0.63
7 321 3.741 −1.27(16) −1.27 0.35 0.36 1.11 0.14
8 400 4.000 2.44(45) 2.432 −0.18 0.28 −2.14 0.40
9 330 4.242 −0.30(27) −0.298 0.14 0.28 0.26 0.23

The results of the calculations obtained for the model crystal with L = 50 considering
interactions up to the ninth nearest neighbours are discussed, in the following, in terms of
diffuse intensity profiles and pair interaction energies.

The diffuse intensity has been reconstructed in the (100) and (110) reciprocal planes from
the final equilibrium values of the SRO parameters (αcal

n ) listed in table 1. The intensity maps
are shown in figure 4. For use in the SRO studies, the intensities are given in Laue units (LU);
in FePd 1 LU = 39.6×10−30 m2. For comparison, the diffuse intensity profiles obtained from
the experimental SRO parameters and the static displacement parameters deduced from the
least-squares procedure based on the Borie and Sparks formalism [29] of the neutron diffuse
scattering data are also reported. In view of the rather poor statistics, it is remarkable that the
main features in position and intensity are reproduced. Namely, the diffuse intensity is mostly
concentrated near 100 and equivalent points, i.e. the positions of the superstructure peaks in
the long-range ordered L10 structure. This is not always the case: in the Pt–V and Ni–V
systems the SRO diffuse intensity in the disordered phase and the LRO peaks in the ordered
phase are differently located [3, 7]. In contrast to the maps deduced from the experimental
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Figure 4. The diffuse scattering intensity (in Laue units) in (100) ((a), (b)) and (110) ((c), (d))
reciprocal planes; as reconstructed from the experimental SRO and the static displacement
parameters ((a), (c)) [17] and calculated from the SRO parameters αcal

n listed in table 1 ((b), (d))
(present work).

parameters, we did not take into account any static displacements for the diffuse intensity
calculations. Nevertheless, the two profiles agree quite well. This is indicative of a small static
displacement in FePd despite the large size difference between Fe and Pd atoms.

The calculated pair interaction energies are summarized in table 1. For comparison, the
results of the inverse CVM calculations obtained in FePd using the same set of experimental
Warren–Cowley SRO parameters [17] are reported in the same table. One should make clear
that the clusters used for the inverse CVM calculations allow only the determination of the
first four and the sixth pair interaction energies. Therefore a direct CVM approximation [30]
was used to calculate the pair interactions for the fifth neighbour pair and all other pairs from
the seventh up the ninth. Despite the many approximations inherent to the inverse CVM
calculations, the results of the two methods agree very well. A strong attractive interaction
between the second nearest neighbours is evidenced by both inverse CVM and inverse Monte
Carlo calculations. The predominance of the second pair interaction has also been recently
observed in the Fe–Pt system [31]. A discrepancy is observed for large distances where the
inverse Monte Carlo method shows, as expected, that the interactions are vanishing in contrast
to the direct CVM results.

Based on the calculated pair interaction energies, Monte Carlo simulation of the order–
disorder transition temperature in equiatomic FePd has been performed. The purpose of
the calculation was to prove whether the interaction model is appropriate and to examine
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the relevance of the pair interaction energies. We have used a model based on the atomic
mechanism of order relaxation in dense phases [32]: the vacancy–atom exchange between
nearest-neighbour sites. The simulation starts with a perfect L10-ordered crystal. One vacancy
is introduced at random in the crystal. The vacancy concentration is kept constant during the
simulation for all temperatures since we are only interested in the final equilibrium value of
the LRO. The equilibrium configuration of the system corresponding to a given temperature
was then generated by imposing periodic boundary conditions and letting it relax according
to the following algorithm: one nearest neighbour of the vacancy is randomly chosen; the
energy balance �H of the atom–vacancy exchange is evaluated from an Ising Hamiltonian
(equation (1)), considering the final and the initial positions of the jumping atom. We have
assumed the relation vFeFe

n = vPdPd
n = −vFePd

n = Vn since it simplifies the algorithm and
does not modify the transition temperature [33]. The jump is performed with the Glauber
probability.

The variation of the equilibrium LRO parameter as a function of temperature has been
followed between 400 and 800 K. The LRO vanishes for temperatures between 700 and 710 K.
The uncertainty on the critical temperature due to the standard deviations in the pair interaction
energies has been obtained separately by doing simulations taking into account the estimated
standard deviation for each Vn . Assuming that the pair interactions are independent and their
squared errors can be added, we get a cumulative error of about 160 K; the critical temperature
is then equal to Tc = 705 ± 160 K. In view of the many approximations of the Monte Carlo
model, the general agreement between the experimental (920 K) and the upper limit of the
simulated transition temperatures is quite satisfactory. In fact, experimentally, a 40 K two-
phase range is observed at the order–disorder transition in FePd. Besides, the method used
here to calculate the LRO parameter, which does not take into account the antiphase domains,
only gives an estimate of the transition temperature.

4. Conclusion

Effective pair interaction energies have been deduced in FePd using an inverse Monte Carlo
method. The accessible range and the accuracy of the pair interactions have been improved in
comparison to the previous inverse and direct CVM calculations. The pair interaction energies
have been used to simulate the order–disorder transition temperature in equiatomic FePd. A
satisfactory agreement with the experimental value is obtained. The calculated pair interaction
energies show the following:

(i) In contrast to the direct CVM results, the interactions are, as expected, vanishing for large
distances, namely, beyond the sixth nearest neighbours.

(ii) The stability of the L10 structure of FePd is mainly due to the predominant second pair
interaction and the alternating behaviour of Vlmn for shells containing like atom (l, m and
n all even) and unlike atom pairs (two odds and one even number among l, m and n) in
the L10 ordered structure.

(iii) The pair interaction range in FePd extends over at least six atomic shells within the error
of the experimental data.

In view of those results, a realistic description of the atomic ordering mechanism and order–
disorder transformation phenomena in FePd would require the magnitude of interatomic
interactions or ordering energies not only for the nearest-neighbour shell, as done is some
previous descriptions of the Fe–Pd system [34], but also for higher coordination shells.



492 T Mehaddene

References

[1] Schweika W and Haubold H G 1988 Phys. Rev. B 37 9240
[2] Pierron-Bohnes V, Kentzinger E, Cadeville M C, Sanchez J M, Caudron R, Solal F and Kozubski R 1995 Phys.

Rev. B 51 5760
[3] Solal F, Caudron R, Ducastelle F, Finel A and Loiseau A 1987 Phys. Rev. Lett. 58 2245
[4] Schönfeld B, Reinhard L, Kostorz G and Bührer W 1997 Acta Mater. 45 5187
[5] Capitan M, Lefebvre S, Calvayrac Y, Bessière M and Cénédèse P 1999 J. Appl. Crystallogr. 32 1039
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[16] Gratias D and Cénédèse P 1985 J. Physique Coll. 46 C9 149
[17] Mehaddene T, Sanchez J M, Caudron R, Zemirli M and Pierron-Bohnes V 2004 Eur. Phys. J. B 41 207
[18] Finel A 1994 Statistics and Dynamics of Alloy Phase Transformation (NATO Advanced Study Institute, Series

B: Physics vol 319) ed P E A Turchi and A Gonis (New York: Plenum) p 495
[19] Gerold V and Kern J 1987 Acta Metall. 35 393
[20] Kubachewski O 1982 Iron Binary Phase Diagrams (New York: Springer)
[21] Gehanno V, Marty A, Gilles B and Samson Y 1997 Phys. Rev. B 55 12552
[22] Kamp P, Marty A, Gilles B, Hoffmann R, Marchesini M, Belakhovsky M, Boeglin C, Dürr H A, Dhesi S S,

van der Laan G and Rogalev A 1999 Phys. Rev. B 59 1105
[23] Tanaka K, Ichitsubo T and Koiwa M 2001 Mater. Sci. Eng. A 312 118

Morioka K and Tanaka K 2001 PRICM4: Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing
ed S Hanada, Z Zhong, S W Nam and R N Wright (Sendai: The Japan Institute of Metals)

[24] Bieber A, Gautier F, Treglia G and Ducastelle F 1981 Solid State Commun. 39 149
[25] Bieber A and Gautier F 1984 J. Phys. Japan 53 2061
[26] Pierron-Bohnes V, Lefebvre S, Bessière M and Finel A 1990 Acta Metall. Mater. 34 2701
[27] Pierron-Bohnes V, Cadeville M C, Finel A and Schaerpf O 1991 J. Physique 1 1247
[28] Proffen T and Neder R B 1997 J. Appl. Crystallogr. 30 171
[29] Borie B and Sparks J C 1971 Acta Crystallogr. A 27 198
[30] Kikuchi R 1951 Phys. Rev. 81 988
[31] Kodera T 2004 Master Thesis Graduate School of Engineering, Hokkaido University

Osaka K, Kodera T, Numakura H, Nose Y and Takama T 2004 134th Mtg of The Japan Institute of Metals
(Tokyo)

[32] Petry W, Heiming A, Herzig C and Trampenau J 1991 Defect Diffus. Forum 75 211
[33] Yaldram K, Pierron-Bohnes V, Cadeville M C and Kahn M A 1999 J. Mater. Res. 10 591
[34] Chen Y, Atago T and Mohri T 2002 J. Phys.: Condens. Matter 14 1903


